Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.002$
R = 0.031	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm A}^{-3}$
wR = 0.030	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm A}^{-3}$
S = 1.748	Extinction correction: none
2924 reflections	Scattering factors from
235 parameters	International Tables for
H atoms not refined	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o)]$	
$+ 0.00004 F_o ^2$]	

Table 1. Selected geometric parameters (Å, °)

	0	•	
Pd1-Cl1	2.295(1)	Pd1—N1	2.017 (3)
Pd1-01	1.990(2)	Pd1—N2	2.051 (2)
Cl1Pd1O1	176.24 (8)	O1-Pd1-N1	84.1(1)
C11Pd1N1	94.65 (8)	O1-Pd1-N2	93.2 (1)
C11—Pd1—N2	88.16 (8)	N1—Pd1—N2	176.7 (1)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	<i>D</i> —-Н	H···A	$D \cdot \cdot \cdot A$	$D = H \cdot \cdot \cdot A$
02-H23···01	0.87	1.77	2.604 (3)	160
$N1 - H4 \cdot \cdot \cdot C11^{ii}$	1.04	2.31	3.285 (3)	156
N2—H18···O2	0.95	2.41	2.776 (3)	103

Symmetry codes: (i) y, x - 1, 2 - z; (ii) $x - y, -y, \frac{5}{3} - z$.

All H atoms were located by difference Fourier syntheses.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992–1997). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1045). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Andrieu, J., Steele, B. R., Screttas, C. G., Cardin, C. J. & Fornies, J. (1998). Organometallics, 17, 839-845.
- Cambridge Structural Database (1999). Version 2.3.7. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Itami, K., Palmgren, A., Thorarensen, A. & Bäckvall, J.-E. (1998). J. Org. Chem. 63, 6466–6471.
- Jamal Aboulhoda, S., Létinois, S., Wilken, J., Reiners, I., Hénin, F., Martens, J. & Muzart, J. (1995). *Tetrahedron Asymmetry*, 6, 1865– 1868.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1997). *Chem. Ber.* 130, 35–44.
- Molecular Structure Corporation (1992–1997). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Mortezaei, R., Awandi, D., Hénin, F., Muzart, J. & Pète, J. P. (1988). J. Am. Chem. Soc. 110, 4824–4826.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved Thorey, C., Hénin, F. & Muzart, J. (1996). Tetrahedron Asymmetry, 7, 975–976.

Tsuji, J. (1995). Editor. Palladium Reagents and Catalysts. Chichester: Wiley.

Acta Cryst. (1999). C55, 2030-2032

Di- μ -bromo-bis[bromo(η^6 -para-cymene)ruthenium(II)] benzene solvate and di- μ -iodo-bis[(η^6 -para-cymene)iodoruthenium(II)] toluene solvate

ANTONIA NEELS, HELEN STOECKLI-EVANS, LAURENT PLASSERAUD, EVA GARCIA FIDALGO AND GEORG SÜSS-FINK

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland. E-mail: antonia.neels@ich.unine.ch

(Received 20 July 1999; accepted 29 July 1999)

Abstract

The homologous title molecules, $[Ru_2Br_4(C_{10}H_{14})_2]$ -C₆H₆, (1), and $[Ru_2I_4(C_{10}H_{14})_2]$ ·C₇H₈, (2), consist of arene-ruthenium moieties [Ru-to-ring distances of 1.655 (2) Å in (1) and 1.673 (3) Å in (2)] with a terminal halogen ligand [Ru—Br 2.548 (1) Å in (1) and Ru—I 2.726 (1) Å in (2)], held together by two symmetrical halogen bridges [Ru—Br 2.575 (1) Å in (1) and Ru—I 2.736 (1) Å in (2)]. The arene rings are planar and parallel to each other, and the terminal halogen ligands are coordinated to ruthenium *trans* with respect to each other. Both molecules possess C_i symmetry.

Comment

The title compounds, $(\eta^6 - p - MeC_6H_4/Pr)_2Ru_2(\mu - X)_2X_2$ [(1) X = Br; (2) X = I], were first obtained from the reaction of $[(\eta^6-p-MeC_6H_4/Pr)_2Ru_2(\mu-OH)_3][BPh_4]$ with HBr and HI, respectively (Gould et al., 1984), while the chloro analogue, $(\eta^6 - p - MeC_6H_4^i Pr)_2Ru_2(Cl)_2$ -Cl₂, was first reported as a product of the reaction of hydrated ruthenium(III) chloride with α -phellandrene (Bennett & Smith, 1974). The benzene complexes (η^{6} - $C_6H_6)_2Ru_2(\mu-X)_2X_2$ have been known for even longer (Zelonka & Baird, 1972), the chloro derivative having been reported first, erroneously as a polymer (Winkaus & Singer, 1967). Surprisingly, structural information is available only for chloro derivatives of the hexamethylbenzene, ethylbenzoate and trindane analogues, *i.e.* (η^{6} - $C_6Me_6_2Ru_2(\mu-Cl)_2Cl_2$ (McCormick & Gleason, 1988), $(n^{6}-C_{6}H_{6}CO_{2}Et)_{2}Ru_{2}(\mu-Cl)_{2}Cl_{2}$ (Therrien *et al.*, 1998) and $(\eta - {}^{6}C_{15}H_{8})_{2}Ru_{2}(\mu - Cl)_{2}Cl_{2}$ (Gupta et al., 1997). As (1) and (2) are easily accessible in high yield from $(\eta^6 - p - \text{MeC}_6 H_4^i Pr)_2 Ru_2(\mu - Cl)_2 Cl_2$ with NaBr and KI, respectively, giving high quality crystals, we decided to undertake a single-crystal X-ray structure analysis of these simple compounds.

(2) X = I, toluene solvate

In the molecular structures of (1) (Fig. 1) and (2)(Fig. 2), the two metal atoms and the symmetrically bridging Br^- or I^- ions are coplanar, with average an Ru-Br distance of 2.573 (3) Å for (1) and an average Ru—I distance of 2.733 (3) Å for (2). The Ru…Ru distances are 3.854(1) Å in (1) and 4.092(1) Å in (2), and are too long to be considered as bonds. The two halves of the molecules are related by a crystallographic inver-

Fig. 1. The molecular structure of (1) showing the numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. The molecular structure of (2) showing the numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

sion center, and thus the two *p*-cymene ligands lie in parallel planes. The distance of the Ru atom from the *p*-cymene centroid in (1) is slightly shorter [1.655(2) Å]than in (2) [1.673 (3) Å]. In similar $\operatorname{Ru}_2\operatorname{Cl}_4L_2$ structures [L = hexamethylbenzene (McCormick & Gleason,1988) and trindane (Gupta et al., 1997)] the corresponding ruthenium-ligand-centroid distances are even shorter, with an average distance of 1.647(2)Å. The Ru-I terminal bond distances in (2) [2.726(1)Å] are longer than the corresponding Ru-Br bond distances in (1) [2.547(1) Å]. The similar position of the terminal halogen ligand in both compounds with respect to the isopropyl group of the p-cymene ligand can be expressed by the torsion angles Br2-Ru1-C1-C7 [31.7(7) Å] and I2—Ru1—C1—C7 [33.2(6) Å]. Selected bond lengths and angles for (1) and (2) are given in Tables 1 and 2, respectively.

Experimental

A suspension of $(\eta^6 - p - MeC_6H_4^i Pr)_2Ru_2(\mu - Cl)_2Cl_2$ (100 mg, 0.16 mmol) in water (20 ml) was stirred with silver sulfate (102 mg, 0.33 mmol) for 2 h at room temperature. After filtration, solid NaBr (168 mg, 1.63 mmol) or NaI (245 mg, 1.63 mmol) was added to the yellow solution, which was stirred for 2 h. The deep-red precipitate obtained was filtered off, washed with water $(3 \times 5 \text{ ml})$ and dried in vacuo. Recrystallization of (1) from chloroform/benzene gave darkbrown crystals (78 mg, 60%) and recrystallization of (2) from chloroform/toluene gave black crystals (121 mg, 76%).

Compound (1)

Crystal data

 $[Ru_2Br_4(C_{10}H_{14})_2] \cdot C_6H_6$ $M_r = 868.31$ Triclinic $P\overline{1}$ a = 8.5740(10) Å $b = 8.7391 (10) \text{ \AA}$ c = 9.9027 (11) Å $\alpha = 102.879(13)^{\circ}$ $\beta = 97.367 (14)^{\circ}$ $\gamma = 100.535 (14)^{\circ}$ $V = 700.00 (14) \text{ Å}^3$ Z = 1 $D_x = 2.060 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Stoe Image Plate diffractom-2204 reflections with $I > 2\sigma(I)$ eter $R_{\rm int} = 0.056$ φ oscillation scans $\theta_{\rm max} = 25.87^{\circ}$ Absorption correction: $h = -10 \rightarrow 10$ semi-empirical (MULABS in PLATON99; Spek, $k = -10 \rightarrow 10$ 1999) $l = -11 \rightarrow 12$ $T_{\rm min} = 0.037, T_{\rm max} = 0.130$ 5433 measured reflections

2515 independent reflections

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5000 reflections $\theta=1.65{-}26.05^\circ$ $\mu = 6.800 \text{ mm}^{-1}$ T = 293 (2) KBlock $0.76 \times 0.38 \times 0.30$ mm Dark brown

Intensity decay: none

$[Ru_2Br_4(C_{10}H_{14})_2] \cdot C_6H_6$ AND $[Ru_2I_4(C_{10}H_{14})_2] \cdot C_7H_8$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.139$ S = 1.029	$\Delta \rho_{\text{max}} = 1.97 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.21 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick,	+ 1.27 where P $(\Delta/\sigma)_{\rm max} =$
2515 reflections	1997)	Table 7
149 parameters	Extinction coefficient:	Table 2.
H atoms constrained	0.027 (3)	Ru1—I1
$w = 1/[\sigma^2(F_o^2) + (0.1031P)^2]$	Scattering factors from	Ru1—11
where $P = (F_0^2 + 2F_c^2)/3$	International Tables for	11—Ru1—11
$(\Delta/\sigma)_{\rm max} < 0.001$	Crystallography (Vol. C)	12—Ru1—11
$(\Delta r) = 0.001$	Crystatiography (Vol. C)	Symmetry co

radie 1. Serecica geometric parameters (11, 110) (1	Table	1. Selected	geometric	parameters	(Å,	°)	for ((1))
---	-------	-------------	-----------	------------	-----	----	-------	-----	---

	0	•	
Ru1—Br1	2.5650 (8)	Ru1—Br2	2.5471 (8)
Rul—Brl ¹	2.5802 (8)	Rul···Rul'	3.8539 (11)
Br1—Ru1—Br1 ⁱ	82.99 (3)	Rul—Brl—Rul'	97.01 (3)
Br2—Ru1—Br1 ⁱ	88.03 (3)		
Symmetry code: (i)	1 - x, 1 - y, 1	— <i>z</i> .	

Compound (2)

Crystal data

$[Ru_2L_4(C_{10}H_{14})_2] \cdot C_7H_8$	Mo $K\alpha$ radiation
$M_r = 1070.34$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 32
$P\overline{1}$	reflections
a = 8.755 (1) Å	$\theta = 12.8 - 20.5^{\circ}$
b = 9.090 (1) Å	$\mu = 4.919 \text{ mm}^{-1}$
c = 10.420 (1) Å	T = 293 (2) K
$\alpha = 103.71 (1)^{\circ}$	Block
$\beta = 96.18 (1)^{\circ}$	$0.68 \times 0.60 \times 0.38$ mm
$\gamma = 100.12 (1)^{\circ}$	Black
$V = 783.37 (15) \text{ Å}^3$	
Z = 1	
$D_x = 2.269 \text{ Mg m}^{-3}$	

 D_m not measured

Data collection

Stoe AED-2 four-circle 2603 reflections with diffractometer $I > 2\sigma(I)$ $\omega/2\theta$ scan $\theta_{\rm max} = 25.48^{\circ}$ Absorption correction: $h = -10 \rightarrow 10$ ψ scans (North *et al.*, $k = -11 \rightarrow 10$ 1968) $l = 0 \rightarrow 12$ $T_{\rm min} = 0.063, T_{\rm max} = 0.154$ 2 standard reflections 2866 measured reflections frequency: 60 min 2866 independent reflections intensity decay: <3%

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.123$ S = 1.2942866 reflections 156 parameters H atoms constrained

 $\Delta \rho_{\rm max} = 1.13 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.28 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction:

Extinction coefficient:

1997)

0.051(3)

SHELXL97 (Sheldrick,

$w = 1/[\sigma^2(F_o^2) + (0.0629P)^2$ $P^{54P]} = (F_o^2 + 2F_c^2)/3$ 0.001

Scattering factors from International Tables for Crystallography (Vol. C)

Selected geometric parameters (Å, $^{\circ}$) for (2)

Ru1—11 Ru1—11'	2.7292 (8) 2.7359 (7)	Ru1—I2 Ru1···Ru1'	2.7256 (8) 4.0918 (12)
II-Rul-II	83.04 (2)	Rul—II—Rul'	96.96 (2)
Symmetry code: (i	87.59(2)		
	/,, -	.	

In (1), one benzene molecule was found per asymmetric unit, while (2) crystallizes with one disordered molecule of toluene per asymmetric unit. The toluene disorder was modeled with three C atoms and two H atoms at population 1.0, with the methyl moiety at population 0.5. The disordered H atom at population 0.5 was not included in the model.

Data collection: EXPOSE (Stoe & Cie, 1997) for (1); STADI4 (Stoe & Cie, 1995a) for (2). Cell refinement: CELL (Stoe & Cie, 1997) for (1); STADI4 for (2). Data reduction: INTEGRATE (Stoe & Cie, 1997) for (1); X-RED (Stoe & Cie, 1995b) for (2). For both compounds, program(s) used to solve structures: SHELXS97 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1999); software used to prepare material for publication: SHELXL97.

This work has been supported by the Swiss National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1323). Services for accessing these data are described at the back of the journal.

References

- Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.
- Gould, R. O., Jones, C. L., Stephenson, T. A. & Tocher, D. A. (1984). J. Organomet. Chem. 264, 365-378.
- Gupta, H. K., Lock, P. E., Hughes, D. W. & McGlinchey, M. J. (1997). Organometalllics, 16, 4355-4361.
- McCormick, F. B. & Gleason, W. B. (1988). Acta Cryst. C44, 603-605
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1999). PLATON99. Multipurpose Crystallographic Tool. Utrecht University, The Netherlands.
- Stoe & Cie (1995a). STADI4. Diffractometer Control Program for Windows. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1995b). X-RED. Data Reduction Program for Windows. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1997). EXPOSE, CELL and INTEGRATE. Versions 2.79. Programs for for Data Collection, Cell Refinement and Reduction of IPDS Data. Stoe IPDS, Darmstadt, Germany.
- Therrien, B., Ward, T., Pilkington, M., Hoffmann, C., Gilardoni, F. & Weber, J. (1998). Organometalllics, 17, 330-337.
- Winkaus, G. & Singer, H. (1967). J. Organomet. Chem. 7, 487-491.
- Zelonka, R. A. & Baird, M. C. (1972). Can. J. Chem. 55, 3063-3072.